Pulsar polarimetry with the Parkes ultra-wideband receiver

Author:

Oswald Lucy1ORCID,Karastergiou Aris12,Johnston Simon3ORCID

Affiliation:

1. Department of Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK

2. Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown 6140, South Africa

3. CSIRO Astronomy and Space Science, Australia Telescope National Facility, PO Box 76, Epping, NSW 1710, Australia

Abstract

ABSTRACT Pulsar radio emission and its polarization are observed to evolve with frequency. This frequency dependence is key to the emission mechanism and the structure of the radio beam. With the new ultra-wideband receiver (UWL) on the Parkes radio telescope we are able, for the first time, to observe how pulsar profiles evolve over a broad continuous bandwidth of 700–4000 MHz. We describe here a technique for processing broad-band polarimetric observations to establish a meaningful alignment and visualize the data across the band. We apply this to observations of PSRs J1056–6258 and J1359–6038, chosen due to previously unresolved questions about the frequency evolution of their emission. Application of our technique reveals that it is possible to align the polarization position angle (PA) across a broad frequency range when constrained to applying only corrections for dispersion and Faraday rotation to do so. However, this does not correspond to aligned intensity profiles for these two sources. We find that it is possible to convert these misalignments into emission height range estimates that are consistent with published and simulated values, suggesting that they can be attributed to relativistic effects in the magnetosphere. We discuss this work in the context of the radio beam structure and prepare the ground for a wider study of pulsar emission using broad-band polarimetric data.

Funder

Science and Technology Facilities Council

Commonwealth Scientific and Industrial Research Organisation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3