Nothing to see here: failed supernovae are faint or rare

Author:

Byrne R A1ORCID,Fraser M1ORCID

Affiliation:

1. School of Physics, University College Dublin , Belfield, Dublin 4, D04 V1W8, Ireland

Abstract

ABSTRACT The absence of Type IIP core-collapse supernovae arising from progenitors above 17 solar masses suggests the existence of another evolutionary path by which massive stars end their lives. The direct collapse of a stellar core to a black hole without the production of a bright, explosive transient is expected to produce a long-lived, dim, red transient known as a failed supernova. Despite the detection of a number of candidates for disappearing massive stars in recent years, conclusive observational evidence for failed supernovae remains elusive. A custom-built pipeline designed for the detection of faint transients is used to re-analyse 10 yr of observations of 231 nearby galaxies from the PTF/ZTF surveys. This analysis recovers known supernovae, and yields a number of interesting transients. However, none of these are consistent with a failed supernova. Through Monte Carlo tests the recovery efficiency of our pipeline is quantified. By assuming failed supernovae occur as a Poissonian process with zero detections in the data set, 95 per cent upper limits to the rate of failed supernovae are calculated as a function of failed supernova absolute magnitude. We estimate failed supernovae to be less than 0.61, 0.33, 0.26, or 0.23 of the core-collapse SN rate for absolute magnitudes of −11, −12, −13, and −14, respectively. Finally, we show that if they exist, the Vera C. Rubin Observatory will find 1.7–3.7 failed SNe per year for an absolute bolometric luminosity of ∼6 × 1039 erg s−1 out to distances of 33–43 Mpc, depending on their assumed spectral energy distribution.

Funder

Irish Research Council

Jet Propulsion Laboratory

California Institute of Technology

National Aeronautics and Space Administration

Lawrence Berkeley National Laboratory

National Science Foundation

University of Maryland

University of Washington

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3