A model of solar magnetic flux rope eruption initiated primarily by magnetic reconnection

Author:

Liu Qingjun1,Jiang Chaowei12,Bian Xinkai1ORCID,Feng Xueshang12ORCID,Zuo Pingbing12,Wang Yi12

Affiliation:

1. Shenzhen Key Laboratory of Numerical Prediction for Space Storm, Institute of Space Science and Applied Technology, Harbin Institute of Technology , Shenzhen 518055 , China

2. Key Laboratory of Solar Activity and Space Weather, National Space Science Center, Chinese Academy of Sciences , Beijing 100190 , China

Abstract

ABSTRACT There is a heated debate regarding the specific roles played by ideal magnetohydrodynamic (MHD) instability and magnetic reconnection in triggering solar eruptions. In the context of a pre-existing magnetic flux rope (MFR) before an eruption, it is widely believed that an ideal MHD instability, in particular, the torus instability, is responsible for triggering and driving the eruption, while reconnection, as invoked in the wake of the erupting MFR, plays a secondary role. Here, we present a new numerical MHD model in which the eruption of a pre-existing MFR is primarily triggered and driven by reconnection. In this model, a stable MFR embedded in a strapping field is set as the initial condition. A surface converging flow is then applied at the lower boundary, pushing magnetic flux towards the main polarity inversion line. It drives a quasi-static evolution of the system, during which a current layer is built up below the MFR with decreasing thickness. Once reconnection starts in the current sheet, the eruption commences, which indicates that the reconnection plays a determining role in triggering the eruption. By further analysing the works done by the magnetic flux of the pre-existing MFR and the newly reconnected flux during the acceleration stage of the eruption, we find that the latter plays a major role in driving the eruption. Such a model may explain observed eruptions in which the pre-eruption MFR has not reached the conditions for ideal instability.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3