A kinetic study of black hole activation by local plasma injection into the inner magnetosphere

Author:

Niv Idan1ORCID,Bromberg Omer1,Levinson Amir1ORCID,Cerutti Benoit2,Crinquand Benjamin3

Affiliation:

1. The Raymond and Beverly Sackler, School of Physics and Astronomy, Tel Aviv University , Tel Aviv 69978 , Israel

2. CNRS, IPAG, Univ. Grenoble Alpes , F-38000 Grenoble , France

3. Department of Astrophysical Sciences, Peyton Hall, Princeton University , Princeton, NJ 08544 , USA

Abstract

ABSTRACT An issue of considerable interest in the theory of jet formation by the Blandford–Znajek mechanism, is how plasma is being supplied to the magnetosphere to maintain force-free conditions. Injection of electron–positron pairs via annihilation of MeV photons, emitted from a hot accretion flow, has been shown to be a viable possibility, but requires high enough accretion rates. At low accretion rates, and in the absence of any other form of plasma supply, the magnetosphere becomes charge-starved, forming intermittent spark gaps that can induce intense pair-cascades via interactions with disc radiation, enabling outflow formation. It is often speculated that enough plasma can penetrate the inner magnetosphere from the accretion flow through some rearrangement of magnetic field lines preventing the formation of spark-gaps. To address this question, we conducted a suite of 2D axisymmetric general-relativistic particle-in-cell simulations, in which plasma is injected into specified regions at a predescribed rate. We find that when pair-production is switched off, nearly complete screening is achieved when plasma is injected at the entire region inside the outer light cylinder at a high enough rate. Injection outside this region results in either, the formation of large vacuum-gaps, or coherent, large-amplitude oscillations of the magnetosphere, depending on the injection rate. Within our allowed dynamical range, we see no evidence for the system to reach a steady-state at high injection rates. Switching on pair-production results in nearly complete screening of the entire magnetosphere in all cases, with a small fraction of the Blandford–Znajek power dissipated as TeV gamma-rays.

Funder

Israel Science Foundation

ISF

European Research Council

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3