Shocking interactions of supernova remnants with atomic and molecular clouds – the interplay between shocks, thermal instability, and gravity in the large cloud regime

Author:

Kupilas M M1ORCID,Pittard J M1ORCID,Wareing C J1,Falle S A E G2

Affiliation:

1. School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK

2. Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK

Abstract

ABSTRACT Using the adaptive mesh refinement code mg, we perform 3D hydrodynamic simulations of a supernova–cloud interaction in the ‘large cloud regime’. The cloud is initially atomic and evolving due to the thermal instability (TI) and gravity. We study interactions in a ‘pre-TI’ and ‘post-TI’ stage when cold and dense clumps are present, and compare these results to idealized shock–cloud scenarios in the ‘small cloud regime’, and a scenario without shocks. On aggregate, the supernova disruption is significantly weaker than that from an idealized shock due to the supernova impact being instantaneous, and not continuous. In both supernova–cloud interactions, we observe two shocks impact the cloud, followed by the development of a weak 10 km s−1 upstream flow on the cloud interface, and a global ambient pressure drop. When the cloud is still atomic, it expands due to this drop. Additionally, the TI is triggered at the front of the cloud, causing the formation of a cap-like structure with clumps embedded inside. The upstream flow converges in this region, resulting in a lobe-like cloud morphology. When the cloud is molecular, the transmitted shock disrupts the inter-clump material and causes the clumps’ outer envelopes to expand slightly and form tail-like morphologies. These effects are less pronounced than those in our shock–cloud scenarios, and more pronounced that those in our un-shocked scenario. After ∼ 3.5 Myr, the effects from the supernova decay and the cloud returns to an almost indistinguishable state from an un-shocked cloud, in spite of the global ambient pressure drop. In neither supernova–cloud scenario do we see any local gravitational collapse.

Funder

STFC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3