Exploring formation scenarios for the exomoon candidate Kepler 1625b I

Author:

Moraes R A12,Vieira Neto E1

Affiliation:

1. UNESP, Univ. Estadual Paulista – Grupo de Dinâmica Orbital & Planetologia, Guaratinguetá, CEP 12.516-410 São Paulo, Brazil

2. Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, São José dos Campos, CEP 12.223-201 São Paulo, Brazil

Abstract

ABSTRACT If confirmed, the Neptune-size exomoon candidate in the Kepler 1625 system will be the first natural satellite outside our Solar system. Its characteristics are nothing alike we know for a satellite. Kepler 1625b I is expected to be as massive as Neptune and to orbit at 40 planetary radii around a ten Jupiter mass planet. Because of its mass and wide orbit, this satellite was first thought to be captured instead of formed in situ. In this work, we investigated the possibility of an in situ formation of this exomoon candidate. To do so, we performed N-body simulations to reproduce the late phases of satellite formation and use a massive circumplanetary disc to explain the mass of this satellite. Our setups started soon after the gaseous nebula dissipation, when the satellite embryos are already formed. Also for selected exomoon systems, we take into account a post-formation tidal evolution. We found that in situ formation is viable to explain the origin of Kepler 1625b I, even when different values for the star–planet separation are considered. We show that for different star–planet separations the minimum amount of solids needed in the circumplanetary disc to form such a satellite varies, the wider is this separation more material is needed. In our simulations of satellite formation, many satellites were formed close to the planet, this scenario changed after the tidal evolution of the systems. We concluded that if the Kepler1625 b satellite system was formed in situ, tidal evolution was an important mechanism to sculpt its final architecture.

Funder

FAPESP

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3