A machine learning approach to measuring the quenched fraction of low-mass satellites beyond the Local Group

Author:

Baxter Devontae C1ORCID,Cooper M C1ORCID,Fillingham Sean P2ORCID

Affiliation:

1. Center for Cosmology, Department of Physics & Astronomy, University of California, Irvine, 4129 Reines Hall, Irvine, CA 92697, USA

2. Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195, USA

Abstract

ABSTRACT Observations suggest that satellite quenching plays a major role in the build-up of passive, low-mass galaxies at late cosmic times. Studies of low-mass satellites, however, are limited by the ability to robustly characterize the local environment and star formation activity of faint systems. In an effort to overcome the limitations of existing data sets, we utilize deep photometry in Stripe 82 of the Sloan Digital Sky Survey, in conjunction with a neural network classification scheme, to study the suppression of star formation in low-mass satellite galaxies in the local Universe. Using a statistically driven approach, we are able to push beyond the limits of existing spectroscopic data sets, measuring the satellite quenched fraction down to satellite stellar masses of ∼107 M⊙ in group environments (Mhalo = 1013−14 h−1 M⊙). At high satellite stellar masses (≳1010 M⊙), our analysis successfully reproduces existing measurements of the quenched fraction based on spectroscopic samples. Pushing to lower masses, we find that the fraction of passive satellites increases, potentially signalling a change in the dominant quenching mechanism at M⋆ ∼ 109 M⊙. Similar to the results of previous studies of the Local Group, this increase in the quenched fraction at low satellite masses may correspond to an increase in the efficacy of ram-pressure stripping as a quenching mechanism in groups.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3