Learning about comets from the study of mass distributions and fluxes of meteoroid streams

Author:

Trigo-Rodríguez Josep M12ORCID,Blum Jürgen3

Affiliation:

1. Institute of Space Sciences (CSIC), Carrer de Can Magrans, s/n, Campus UAB, 08193 Cerdanyola del Vallés (Barcelona), Catalonia, Spain

2. Institut d'Estudis Espacials de Catalunya (IEEC), Edif.. Nexus, c/Gran Capità, 2-4, 08034 Barcelona, Catalonia, Spain

3. Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig, Germany

Abstract

Abstract Meteor physics can provide new clues about the size, structure, and density of cometary disintegration products, establishing a bridge between different research fields. From meteor magnitude data we have estimated the mass distribution of meteoroids from different cometary streams by using the relation between the luminosity and the mass obtained by Verniani (1973). These mass distributions are in the range observed for dust particles released from comets 1P/Halley and 81P/Wild 2 as measured from spacecraft. From the derived mass distributions, we have integrated the incoming mass for the most significant meteor showers. By comparing the mass of the collected Interplanetary Dust Particles (IDPs) with that derived for cometary meteoroids a gap of several orders of magnitude is encountered. The largest examples of fluffy particles are clusters of IDPs no larger than 100 µm in size (or 5×10–7 g in mass) while the largest cometary meteoroids are centimeter-sized objects. Such gaps can be explained by the fragmentation in the atmosphere of the original cometary particles. As an application of the mass distribution computations we describe the significance of the disruption of fragile comets in close approaches to Earth as a more efficient (and probably more frequent) way to deliver volatiles than direct impacts. We finally apply our model to quantify the flux of meteoroids from different meteoroid streams, and to describe the main physical processes contributing to the progressive decay of cometary meteoroids in the interplanetary medium.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3