A comparative study of star-forming dwarf galaxies using the UVIT

Author:

Amrutha S12ORCID,Das Mousumi1ORCID,Yadav Jyoti12ORCID

Affiliation:

1. Indian Institute of Astrophysics , Koramangala II Block, Bangalore 560034 , India

2. Pondicherry University , R.V. Nagar, Kalapet, 605014, Puducherry , India

Abstract

ABSTRACT We present a far-ultraviolet (FUV) study of 16 star-forming dwarf galaxies (SFDGs) using the Ultra Violet Imaging Telescope. Morphologically, SFDGs are classified as dwarf spirals, dwarf irregulars, and blue compact dwarfs (BCDs). We extracted the star-forming complexes (SFCs) from the sample galaxies, derived their sizes, and estimated the FUV + 24 μm star-formation rates (SFRs). We also determined the approximate stellar disc mass associated with the SFCs using Infrared Array Camera 3.6 micron images. We derived the specific SFRs (sSFRs), as well as the SFR densities [Σ(SFR)] for the SFCs. We find that the lower Σ(SFR) for each type is different, with the dwarf irregulars having the lowest Σ(SFR) compared with others. However, the median size of the SFCs in the dwarf irregulars is the largest compared with the other two types when compared at roughly the same distance. We have derived the star-forming main sequence (SFMS) on the scale of SFCs for all three classes of SFDGs. We find that although all SFDGs approximately follow the global SFMS relation, i.e. SFR ∝ M*α (where globally α ≈ 1 for low-surface brightness galaxies and 0.9 for SFDGs), on the scale of SFCs the α value for each type is different. The α values for dwarf spirals, dwarf irregulars, and BCDs are found to be 0.74 ± 0.13, 0.87 ± 0.16, and 0.80 ± 0.19, respectively. However, the age of all SFCs approximately corresponds to 1 Gyr. Finally, we find that the outer SFCs in most galaxies except BCDs have a high sSFR, supporting the inside-out model of galaxy growth.

Funder

Science and Engineering Research Board

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3