Action-based distribution function modelling for constraining the shape of the Galactic dark matter halo

Author:

Hattori Kohei12345ORCID,Valluri Monica5,Vasiliev Eugene67ORCID

Affiliation:

1. National Astronomical Observatory of Japan 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan

2. Institute of Statistical Mathematics 10-3 Midoricho, Tachikawa, Tokyo 190-0014, Japan

3. McWilliams Center for Cosmology, Carnegie Mellon University 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

4. Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

5. Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109, USA

6. Institute of Astronomy, University of Cambridge, Madingley Rd, Cambridge CB3 0HA, UK

7. Lebedev Physical Institute, 53 Leninsky prospekt, Moscow 119991, Russia

Abstract

ABSTRACT We estimate the 3D density profile of the Galactic dark matter (DM) halo within r ≲ 30 kpc from the Galactic centre by using the astrometric data for halo RR Lyrae stars from Gaia DR2. We model both the stellar halo distribution function and the Galactic potential, fully taking into account the survey selection function, the observational errors, and the missing line-of-sight velocity data for RR Lyrae stars. With a Bayesian method, we infer the model parameters, including the density flattening of the DM halo q, which is assumed to be constant as a function of radius. We find that 99 per cent of the posterior distribution of q is located at q > 0.963, which strongly disfavours a flattened DM halo. We cannot draw any conclusions as to whether the Galactic DM halo at $r \lesssim 30 \, \mathrm{kpc}$ is prolate, because we restrict ourselves to axisymmetric oblate halo models with q ≤ 1. Our DM density profile might be biased especially in the inner few kpc, due to the uncertainty in the baryonic distribution. Our result is in tension with predictions from cosmological hydrodynamical simulations that advocate more oblate (〈q〉 ∼ 0.8 ± 0.15) DM haloes within ${\sim}15{{\ \rm per\ cent}}$ of the virial radius for Milky-Way-sized galaxies. An alternative possibility, based on our validation tests with a cosmological simulation, is that the true value q of the Galactic halo could be consistent with cosmological simulations but that disequilibrium in the Milky Way potential is inflating our measurement of q by 0.1–0.2. As a by-product, our model constrains the DM density in the Solar neighbourhood to be $\rho _{\mathrm{DM},\odot } = (9.01^{+0.18}_{-0.20})\times 10^{-3}{\,\rm M_\odot} \mathrm{pc}^{-3} = 0.342^{+0.007}_{-0.007}$ GeVcm−3, consistent with other recent measurements.

Funder

JSPS

STFC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3