Assessing the performance of LTE and NLTE synthetic stellar spectra in a machine learning framework

Author:

Bialek Spencer1,Fabbro Sébastien12,Venn Kim A1ORCID,Kumar Nripesh13,O’Briain Teaghan1,Yi Kwang Moo4

Affiliation:

1. Department of Physics and Astronomy, University of Victoria, Victoria, BC V8W 3P2, Canada

2. National Research Council Herzberg Astronomy and Astrophysics, 4071 West Saanich Road, Victoria, BC V9E 2E7, Canada

3. Department of Computer Science, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India

4. Department of Computer Science, University of Victoria, Victoria, BC V8P 5C2, Canada

Abstract

ABSTRACT In the current era of stellar spectroscopic surveys, synthetic spectral libraries are the basis for the derivation of stellar parameters and chemical abundances. In this paper, we compare the stellar parameters determined using five popular synthetic spectral grids (INTRIGOSS, FERRE, AMBRE, PHOENIX, and MPIA/1DNLTE) with our convolutional neural network (CNN, StarNet). The stellar parameters are determined for six physical properties (effective temperature, surface gravity, metallicity, [α/Fe], radial velocity, and rotational velocity) given the spectral resolution, signal-to-noise ratio, and wavelength range of optical FLAMES-UVES spectra from the Gaia-ESO Survey. Both CNN modelling and epistemic uncertainties are incorporated through training an ensemble of networks. StarNet training was also adapted to mitigate differences between the synthetic grids and observed spectra by augmenting with realistic observational signatures (i.e. resolution matching, wavelength sampling, Gaussian noise, zeroing flux values, rotational and radial velocities, continuum removal, and masking telluric regions). Using the FLAMES-UVES spectra for FGK-type dwarfs and giants as a test set, we quantify the accuracy and precision of the stellar label predictions from StarNet. We find excellent results over a wide range of parameters when StarNet is trained on the MPIA/1DNLTE synthetic grid, and acceptable results over smaller parameter ranges when trained on the 1DLTE grids. These tests also show that our CNN pipeline is highly adaptable to multiple simulation grids.

Funder

Natural Sciences and Engineering Research Council of Canada

Mitacs

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3