matryoshka II: accelerating effective field theory analyses of the galaxy power spectrum

Author:

Donald-McCann Jamie1ORCID,Koyama Kazuya1ORCID,Beutler Florian2ORCID

Affiliation:

1. Institute of Cosmology & Gravitation, University of Portsmouth , Dennis Sciama Building, Portsmouth PO1 3FX, UK

2. Institute for Astronomy, University of Edinburgh , Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK

Abstract

ABSTRACT In this paper, we present an extension to the matryoshka suite of neural-network-based emulators. The new editions have been developed to accelerate effective field theory of large-scale structure (EFTofLSS) analyses of galaxy power spectrum multipoles in redshift space. They are collectively referred to as the EFTEMU. We test the EFTEMU at the power spectrum level and achieve a prediction accuracy of better than 1 per cent with BOSS-like bias parameters and counterterms on scales 0.001 ≤ k ≤ 0.19 h Mpc−1. We also run a series of mock full-shape analyses to test the performance of the EFTEMU when carrying out parameter inference. Through these mock analyses, we verify that the EFTEMU recovers the true cosmology within 1σ at several redshifts (z = [0.38, 0.51, 0.61]), and with several noise levels (the most stringent of which is Gaussian covariance associated with a volume of 50003 Mpc3 h−3). We compare the mock inference results from the EFTEMU to those obtained with a fully analytic EFTofLSS model and again find no significant bias, whilst speeding up the inference by three orders of magnitude. The EFTEMU is publicly available as part of the matryoshkaPython package.

Funder

STFC

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Faster cosmological analysis with power spectrum without simulations;Monthly Notices of the Royal Astronomical Society;2024-04-30

2. Fast production of cosmological emulators in modified gravity: the matter power spectrum;Journal of Cosmology and Astroparticle Physics;2023-12-01

3. Fast and robust Bayesian inference using Gaussian processes with GPry;Journal of Cosmology and Astroparticle Physics;2023-10-01

4. Analysis of unified galaxy power spectrum multipole measurements;Monthly Notices of the Royal Astronomical Society;2023-09-28

5. Interferometric H i intensity mapping: perturbation theory predictions and foreground removal effects;Monthly Notices of the Royal Astronomical Society;2023-01-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3