Direct collapse to supermassive black hole seeds: the critical conditions for suppression of H2 cooling

Author:

Luo Yang1ORCID,Shlosman Isaac23ORCID,Nagamine Kentaro345ORCID,Fang Taotao1

Affiliation:

1. Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005, China

2. Department of Physics & Astronomy, University of Kentucky, Lexington, KY 40506, USA

3. Theoretical Astrophysics, Department of Earth and Space Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan

4. Department of Physics & Astronomy, University of Nevada, Las Vegas, NV 89154, USA

5. Kavli-IPMU (WPI), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan

Abstract

ABSTRACT Observations of high-redshift quasars imply the presence of supermassive black holes (SMBHs) already at $z$ ∼ 7.5. An appealing and promising pathway to their formation is the direct collapse scenario of a primordial gas in atomic-cooling haloes at $z$ ∼ 10–20, when the $\rm H_{2}$ formation is inhibited by a strong background radiation field, whose intensity exceeds a critical value, Jcrit. To estimate Jcrit, typically, studies have assumed idealized spectra, with a fixed ratio of $\rm H_{2}$ photodissociation rate $k_{\rm H_2}$ to the $\rm H^-$ photodetachment rate $k_{\rm H^-}$. This assumption, however, could be too narrow in scope as the nature of the background radiation field is not known precisely. In this work we argue that the critical condition for suppressing the H2 cooling in the collapsing gas could be described in a more general way by a combination of $k_{\rm H_2}$ and $k_{\rm H^-}$ parameters, without any additional assumptions about the shape of the underlying radiation spectrum. By performing a series of cosmological zoom-in simulations covering a wide range of relevant $k_{\rm H_2}$ and $k_{\rm H^-}$ parameters, we examine the gas flow by following evolution of basic parameters of the accretion flow. We test under what conditions the gas evolution is dominated by $\rm H_{2}$ and/or atomic cooling. We confirm the existence of a critical curve in the $k_{\rm H_2}{\!-\!}k_{\rm H^-}$ plane and provide an analytical fit to it. This curve depends on the conditions in the direct collapse, and reveals domains where the atomic cooling dominates over the molecular cooling. Furthermore, we have considered the effect of $\rm H_{2}$ self-shielding on the critical curve, by adopting three methods for the effective column density approximation in $\rm H_{2}$. We find that the estimate of the characteristic length scale for shielding can be improved by using λJeans25, which is 0.25 times that of the local Jeans length, which is consistent with previous one-zone modelling.

Funder

National Key R&D Program of China

NSFC

JSPS

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3