Effect of surface H2 on molecular hydrogen formation on interstellar grains

Author:

Zhao Gang1,Chang Qiang1ORCID,Zhang Xia2ORCID,Quan Donghui3,Zhang Yong4ORCID,Li Xiao-Hu2

Affiliation:

1. School of Physics and Optoeletronic Engineering, Shandong University of Technology, Zibo, 255000, China

2. Xinjiang Astronomical Observatory, Chinese Academy of Sciences, 150 Science 1-Street, Urumqi 830011, China

3. Department of Chemistry, Eastern Kentucky University, Richmond, 40475 KY, USA

4. School of Physics & Astronomy, Sun Yat-Sen University, Zhuhai 519082, China

Abstract

ABSTRACT We investigate how the existence of hydrogen molecules on grain surfaces may affect H2 formation efficiency in diffuse and translucent clouds. Hydrogen molecules are able to reduce the desorption energy of H atoms on grain surfaces in models. The detailed microscopic Monte Carlo method is used to perform model simulations. We found that the impact of the existence of H2 on H2 formation efficiency strongly depends on the diffusion barriers of H2 on grain surfaces. Diffuse cloud models that do not consider surface H2 predict that H atom recombination efficiency is above 0.5 over a grain temperature (T) range 10 and 14 K. The adopted H2 diffusion barriers in diffuse cloud models that consider surface H2 are 80${{\ \rm per\ cent}}$ H2 desorption energies so that H2 can be trapped in stronger binding sites. Depending on model parameters, these diffuse cloud models predict that the recombination efficiency is between nearly 0 and 0.5 at 10 ≤T≤ 14 K. Translucent cloud model results show that H2 formation efficiency is not affected by the existence of surface H2 if the adopted average H2 diffusion barrier on grain surfaces is low (194 K) so that H2 can diffuse rapidly on grain surfaces. However, the recombination efficiency can drop to below 0.002 atT≥ 10 K if higher average H2 diffusion barrier is used (255 K) in translucent cloud models.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3