Feedback-limited accretion: variable luminosity from growing planets

Author:

Gárate M123ORCID,Cuadra J1456ORCID,Montesinos M678,Arévalo P7

Affiliation:

1. Instituto de de Astrofísica, Pontificia Universidad Católica de Chile, 8970117 Santiago, Chile

2. University Observatory, Faculty of Physics, Ludwig-Maximilians-Universität München, Scheinerstr. 1, D-81679 Munich, Germany

3. Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany

4. Max-Planck-Institut für extraterrestriche Physik (MPE), D-85748 Garching, Germany

5. Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar, Chile

6. Núcleo Milenio de Formación Planetaria (NPF),2340000 Valparaíso, Chile

7. Instituto de Física y Astronomía, Universidad de Valparaíso, Av. Gran Bretaña 1111, Casilla 5030, Valparaíso, Chile

8. South America Center for Astronomy, National Astronomical Observatories, CAS, Beijing 100012, China

Abstract

ABSTRACT Planets form in discs of gas and dust around stars, and continue to grow by accretion of disc material while available. Massive planets clear a gap in their protoplanetary disc, but can still accrete gas through a circumplanetary disc. For high enough accretion rates, the planet should be detectable at infrared wavelengths. As the energy of the gas accreted on to the planet is released, the planet surroundings heat up in a feedback process. We aim to test how this planet feedback affects the gas in the coorbital region and the accretion rate itself. We modified the 2D code FARGO-AD to include a prescription for the accretion and feedback luminosity of the planet and use it to model giant planets on 10 au circular and eccentric orbits around a solar mass star. We find that this feedback reduces but does not halt the accretion on to the planet, although this result might depend on the near-coincident radial ranges where both recipes are implemented. Our simulations also show that the planet heating gives the accretion rate a stochastic variability with an amplitude $\Delta \dot{M}_p \sim 0.1 \dot{M}_p$. A planet on an eccentric orbit (e = 0.1) presents a similar variability amplitude, but concentrated on a well-defined periodicity of half the orbital period and weaker broad-band noise, potentially allowing observations to discriminate between both cases. Finally, we find that the heating of the co-orbital region by the planet feedback alters the gas dynamics, reducing the difference between its orbital velocity and the Keplerian motion at the edge of the gap, which can have important consequences for the formation of dust rings.

Funder

ICM

FONDECYT

ERC

Chinese Academy of Sciences

CONICYT

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3