The effect of fluctuating fuzzy axion haloes on stellar dynamics: a stochastic model

Author:

El-Zant Amr A1,Freundlich Jonathan23ORCID,Combes Françoise24,Halle Anaelle24

Affiliation:

1. Centre for Theoretical Physics, The British University in Egypt, Sherouk City, 11837 Cairo, Egypt

2. LERMA, Observatoire de Paris, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, F-75014 Paris, France

3. Centre for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

4. Collège de France, PSL Research University, F-75005 Paris, France

Abstract

ABSTRACT Fuzzy dark matter of ultralight axions has gained attention, largely in light of the galactic scale problems associated with cold dark matter. But the large de Broglie wavelength, believed to possibly alleviate these problems, also leads to fluctuations that place constraints on ultralight axions. We adapt and extend a method, previously devised to describe the effect of gaseous fluctuations on cold dark matter cusps, in order to determine the imprints of ultralight axion haloes on the motion of classical test particles. We first evaluate the effect of fluctuations in a statistically homogeneous medium of classical particles, then in a similar system of ultralight axions. In the first case, one recovers the classical two body relaxation time (and diffusion coefficients) from white noise density fluctuations. In the second situation, the fluctuations are not born of discreteness noise but from the finite de Broglie wavelength; correlation therefore exists over this scale, while white noise is retained on larger scales, elucidating the correspondence with classical relaxation. The resulting density power spectra and correlation functions are compared with those inferred from numerical simulations, and the relaxation time arising from the associated potential fluctuations is evaluated. We then apply our results to estimate the heating of discs embedded in axion dark haloes. We find that this implies an axion mass $m \gtrsim 2 \times 10^{-22} \, {\rm eV}$. We finally apply our model to the case of the central cluster of Eridanus II, confirming that far stronger constraints on m may in principle be obtained, and discussing the limitations associated with the assumptions leading to these.

Funder

Science and Technology Development Fund

Franco-Egyptian Partenariat Hubert Curien

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3