Deep learning in searching the spectroscopic redshift of quasars

Author:

Rastegarnia F123,Mirtorabi M T12,Moradi R234,Vafaei Sadr A5,Wang Y234

Affiliation:

1. Department of Physics, Faculty of Physics and Chemistry, Alzahra University, Vanak, 1993891176, Tehran, Iran

2. ICRANet, Piazza della Repubblica 10, I-65122 Pescara, Italy

3. ICRA, Dipartimento di Fisica, Università di Roma ‘La Sapienza’, Piazzale Aldo Moro 5, I-00185 Roma, Italy

4. INAF – Osservatorio Astronomico d’Abruzzo, Via M. Maggini snc, I-64100 Teramo, Italy

5. Departement de Physique Theorique, Universite de Geneve, 1211 Geneva 4, Switzerland

Abstract

ABSTRACT Studying the cosmological sources at their cosmological rest frames is crucial to track the cosmic history and properties of compact objects. In view of the increasing data volume of existing and upcoming telescopes/detectors, we here construct a 1D convolutional neural network (CNN) with a residual neural network (ResNet) structure to estimate the redshift of quasars in the Sloan Digital Sky Survey IV (SDSS-IV) catalogue from the Data Release 16 Quasar-only (DR16Q) of the extended Baryon Oscillation Spectroscopic Survey on a broad range of signal-to-noise ratios, named FNet. Owing to its 24 convolutional layers and the ResNet structure with different kernel sizes of 500, 200, and 15, FNet is able to discover the local and global patterns in the whole sample of spectra by a self-learning procedure. It reaches the accuracy of 97.0 ${{\ \rm per\ cent}}$ for the velocity difference for redshift, $|\Delta \nu |\lt 6000\, \rm km\, s^{-1}$, and 98.0 ${{\ \rm per\ cent}}$ for $|\Delta \nu |\lt 12\,000\, \rm km\, s^{-1}$, while QuasarNET, which is a standard CNN adopted in the SDSS routine and is constructed of four convolutional layers (no ResNet structure), with kernel sizes of 10, to measure the redshift via identifying seven emission lines (local patterns), fails in estimating redshift of $\sim 1.3{{\ \rm per\ cent}}$ of visually inspected quasars in the DR16Q catalogue, and it gives 97.8 ${{\ \rm per\ cent}}$ for $|\Delta \nu |\lt 6000\, \rm km\, s^{-1}$ and 97.9 ${{\ \rm per\ cent}}$ for $|\Delta \nu |\lt 12\,000\, \rm km\, s^{-1}$. Hence, FNet provides similar accuracy to QuasarNET, but it is applicable for a wider range of SDSS spectra, especially for those missing the clear emission lines exploited by QuasarNET. These properties of FNet, together with the fast predictive power of machine learning, allow FNet to be a more accurate alternative for the pipeline redshift estimator and can make it practical in the upcoming catalogues to reduce the number of spectra to visually inspect.

Funder

University of Science and Technology of China

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3