Marginal post-processing of Bayesian inference products with normalizing flows and kernel density estimators

Author:

Bevins Harry T J12ORCID,Handley William J12ORCID,Lemos Pablo34ORCID,Sims Peter H5ORCID,de Lera Acedo Eloy12ORCID,Fialkov Anastasia26,Alsing Justin7

Affiliation:

1. Astrophysics Group, Cavendish Laboratory , Cambridge CB3 0HE , UK

2. Kavli Institute for Cosmology , Cambridge CB3 0HA , UK

3. Department of Physics & Astronomy, University College London , London WC1E 6BT , UK

4. Department of Physics and Astronomy, University of Sussex , Brighton BN1 9QH , UK

5. Department of Physics and Trottier Space Institute, McGill University , Montreal, QC H3A 2T8 , Canada

6. Institute of Astronomy, University of Cambridge , Cambridge CB3 0HA , UK

7. Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University , SE-106 91 Stockholm , Sweden

Abstract

ABSTRACT Bayesian analysis has become an indispensable tool across many different cosmological fields, including the study of gravitational waves, the cosmic microwave background, and the 21-cm signal from the Cosmic Dawn, among other phenomena. The method provides a way to fit complex models to data describing key cosmological and astrophysical signals and a whole host of contaminating signals and instrumental effects modelled with ‘nuisance parameters’. In this paper, we summarize a method that uses masked autoregressive flows and kernel density estimators to learn marginal posterior densities corresponding to core science parameters. We find that the marginal or ‘nuisance-free’ posteriors and the associated likelihoods have an abundance of applications, including the calculation of previously intractable marginal Kullback–Leibler divergences and marginal Bayesian model dimensionalities, likelihood emulation, and prior emulation. We demonstrate each application using toy examples, examples from the field of 21-cm cosmology, and samples from the Dark Energy Survey. We discuss how marginal summary statistics like the Kullback–Leibler divergences and Bayesian model dimensionalities can be used to examine the constraining power of different experiments and how we can perform efficient joint analysis by taking advantage of marginal prior and likelihood emulators. We package our multipurpose code up in the pip-installable code margarine for use in the wider scientific community.

Funder

STFC

Kavli Foundation

Swedish Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Constraining the properties of Population III galaxies with multiwavelength observations;Monthly Notices of the Royal Astronomical Society;2024-05-02

2. Scalable inference with autoregressive neural ratio estimation;Monthly Notices of the Royal Astronomical Society;2024-04-27

3. On the constraints on superconducting cosmic strings from 21-cm cosmology;Monthly Notices of the Royal Astronomical Society;2024-02-16

4. Joint analysis constraints on the physics of the first galaxies with low-frequency radio astronomy data;Monthly Notices of the Royal Astronomical Society;2023-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3