Galaxy cluster rotation revealed in the MACSIS simulations with the kinetic Sunyaev–Zeldovich effect

Author:

Altamura Edoardo1ORCID,Kay Scott T1ORCID,Chluba Jens1ORCID,Towler Imogen1ORCID

Affiliation:

1. Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, The University of Manchester , Oxford Road, Manchester M13 9PL , UK

Abstract

ABSTRACT The kinetic Sunyaev–Zeldovich (kSZ) effect has now become a clear target for ongoing and future studies of the cosmic microwave background (CMB) and cosmology. Aside from the bulk cluster motion, internal motions also lead to a kSZ signal. In this work, we study the rotational kSZ effect caused by coherent large-scale motions of the cluster medium using cluster hydrodynamic cosmological simulations. To utilize the rotational kSZ as a cosmological probe, simulations offer some of the most comprehensive data sets that can inform the modelling of this signal. In this work, we use the MACSIS data set to investigate the rotational kSZ effect in massive clusters specifically. Based on these models, we test stacking approaches and estimate the amplitude of the combined signal with varying mass, dynamical state, redshift, and map-alignment geometry. We find that the dark matter, galaxy and gas spins are generally misaligned, an effect that can cause a suboptimal estimation of the rotational kSZ effect when based on galaxy motions. Furthermore, we provide halo-spin–mass scaling relations that can be used to build a statistical model of the rotational kSZ. The rotational kSZ contribution, which is largest in massive unrelaxed clusters (≳100 $\mu$K), could be relevant to studies of higher order CMB temperature signals, such as the moving lens effect. The limited mass range of the MACSIS sample strongly motivates an extended investigation of the rotational kSZ effect in large-volume simulations to refine the modelling, particularly towards lower mass and higher redshift, and provide forecasts for upcoming cosmological CMB experiments (e.g. Simons Observatory, SKA-2) and X-ray observations (e.g. Athena/X-IFU).

Funder

STFC

ERC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3