GRMHD simulations of BH activation by small scale magnetic loops: formation of striped jets and active coronae

Author:

Chashkina Anna1,Bromberg Omer1,Levinson Amir1

Affiliation:

1. The Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel

Abstract

ABSTRACT We have performed a series of numerical experiments aimed at studying the activation of Kerr black holes (BHs) by advection of small scale magnetic fields. Such configurations may potentially give rise to the formation of quasi-striped Blandford-Znajek jets. It can also lead to enhanced dissipation and generation of plasmoids in current sheets formed in the vicinity of the BH horizon, which may constitute a mechanism to power the hard X-ray emission seen in many accreting BH systems (a la lamppost models). Our analysis suggests that formation of quasi-striped jets with significant power may be possible provided loops with alternating polarity having sizes larger than ∼10rg or so can be maintained (either form sporadically or advected from outside) at a radius ≲ 102rg. This conclusion is consistent with recent results of general relativistic force-free simulations. We also find that the accretion dynamics exhibits cyclic behaviour in Magnetically Arrested Disc states, alternating between high accretion phases and quenched accretion phases during which the magnetosphere becomes force-free out to radii ≳ 10rg. We suggest that such a behaviour should lead to notable variations of the observed luminosity and image of the inner disc (BH shadow image). Finally, we find that the transition between accreted loops on the BH gives rise to the formation of current sheets and energetic plasmoids on the jet boundary during intermittent periods when the jet becomes inactive, in addition to an equatorial current sheet that forms during peaks in the jet activity.

Funder

Israel Science Foundation

ISF

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3