Machine learning and structure formation in modified gravity

Author:

Betts Jonathan C1,van de Bruck Carsten1,Arnold Christian2ORCID,Li Baojiu2ORCID

Affiliation:

1. School of Mathematics and Statistics, University of Sheffield , Hounsfield Road, S3 7RH Sheffield, United Kingdom

2. Institute for Computational Cosmology, Department of Physics, Durham University , South Road, Durham DH1 3LE, United Kingdom

Abstract

ABSTRACT In general relativity, approximations based on the spherical collapse model such as Press–Schechter theory and its extensions are able to predict the number of objects of a certain mass in a given volume. In this paper, we use a machine learning algorithm to test whether such approximations hold in screened modified gravity theories. To this end, we train random forest classifiers on data from N-body simulations to study the formation of structures in lambda cold dark matter (ΛCDM) as well as screened modified gravity theories, in particular f(R) and nDGP gravity. The models are taught to distinguish structure membership in the final conditions from spherical aggregations of density field behaviour in the initial conditions. We examine the differences between machine learning models that have learned structure formation from each gravity, as well as the model that has learned from ΛCDM. We also test the generalizability of the ΛCDM model on data from f(R) and nDGP gravities of varying strengths, and therefore the generalizability of extended Press–Schechter spherical collapse to these types of modified gravity.

Funder

STFC

ERC

BEIS

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3