Cleaning foregrounds from single-dish 21 cm intensity maps with Kernel principal component analysis

Author:

Irfan Melis O12,Bull Philip12

Affiliation:

1. Department of Physics and Astronomy, University of Western Cape, Cape Town 7535, South Africa

2. Astronomy Unit, Queen Mary University of London, Mile End Road, London E1 4NS, UK

Abstract

ABSTRACT The high dynamic range between contaminating foreground emission and the fluctuating 21 cm brightness temperature field is one of the most problematic characteristics of 21 cm intensity mapping data. While these components would ordinarily have distinctive frequency spectra, making it relatively easy to separate them, instrumental effects and calibration errors further complicate matters by modulating and mixing them together. A popular class of foreground cleaning method are unsupervised techniques related to principal component analysis (PCA), which exploit the different shapes and amplitudes of each component’s contribution to the covariance of the data in order to segregate the signals. These methods have been shown to be effective at removing foregrounds, while also unavoidably filtering out some of the 21 cm signal too. In this paper we examine, for the first time in the context of 21 cm intensity mapping, a generalized method called Kernel PCA, which instead operates on the covariance of non-linear transformations of the data. This allows more flexible functional bases to be constructed, in principle allowing a cleaner separation between foregrounds and the 21 cm signal to be found. We show that Kernel PCA is effective when applied to simulated single-dish (auto-correlation) 21 cm data under a variety of assumptions about foregrounds models, instrumental effects etc. It presents a different set of behaviours to PCA, e.g. in terms of sensitivity to the data resolution and smoothing scale, outperforming it on intermediate to large scales in most scenarios.

Funder

ERC

National Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3