A simple time-dependent method for calculating spirals: applications to eccentric planets in protoplanetary discs

Author:

Zhu Zhaohuan1ORCID,Zhang Raymond M12

Affiliation:

1. Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA

2. Ed W. Clark High School, Las Vegas, NV 89154, USA

Abstract

ABSTRACT Spirals in protoplanetary discs have been used to locate the potential planet in discs. Since only the spiral shape from a circularly orbiting perturber is known, most previous works assume that the planet is in a circular orbit. We develop a simple semi-analytical method to calculate the shape of the spirals launched by an eccentric planet. We assume that the planet emits wavelets during its orbit, and the wave fronts of these propagating wavelets form the spirals. The resulting spiral shape from this simple method agrees with numerical simulations exceptionally well. The spirals excited by an eccentric planet can detach from the planet, bifurcate, or even cross each other, which are all reproduced by this simple method. The spiral’s bifurcation point corresponds to the wavelet that is emitted when the planet’s radial speed reaches the disc’s sound speed. Multiple spirals can be excited by an eccentric planet (more than five spirals when e ≳ 0.2). The pitch angle and pattern speed are different between different spirals and can vary significantly across one spiral. The spiral wakes launched by high-mass eccentric planets steepen to spiral shocks and the crossing of spiral shocks leads to distorted or broken spirals. With the same mass, a more eccentric planet launches weaker spirals and induces a shallower gap over a long period of time. The observed unusually large/small pitch angles of some spirals, the irregular multiple spirals, and the different pattern speeds between different spirals may suggest the existence of eccentric perturbers in protoplanetary discs.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3