On the orbital evolution of meteoroid 2020 CD3, a temporarily captured orbiter of the Earth–Moon system

Author:

de la Fuente Marcos C1ORCID,de la Fuente Marcos R2ORCID

Affiliation:

1. Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain

2. AEGORA Research Group, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain

Abstract

ABSTRACT Any near-Earth object (NEO) following an Earth-like orbit may eventually be captured by Earth’s gravity during low-velocity encounters. This theoretical possibility was first attested during the fly-by of 1991 VG in 1991–1992 with the confirmation of a brief capture episode – for about a month in February 1992. Further evidence was obtained when 2006 RH120 was temporarily captured into a geocentric orbit from July 2006 to July 2007. Here, we perform a numerical assessment of the orbital evolution of 2020 CD3, a small NEO found recently that could be the third instance of a meteoroid temporarily captured by Earth’s gravity. We confirm that 2020 CD3 is currently following a geocentric trajectory although it will escape into a heliocentric path by early May 2020. Our calculations indicate that it was captured by the Earth in 2016$_{-4}^{+2}$, median and 16th and 84th percentiles. This episode is longer (4$_{-2}^{+4}$ yr) than that of 2006 RH120. Prior to its capture as a minimoon, 2020 CD3 was probably a NEO of the Aten type, but an Apollo type cannot be excluded; in both cases, the orbit was very Earth-like, with low eccentricity and low inclination, typical of an Arjuna-type meteoroid. A few clone orbits remained geocentric for nearly a century, opening the door to the existence of yet-to-be-detected minimoons that are relatively stable for time-scales comparable to those of unbound quasi-satellites such as (469219) Kamo‘oalewa 2016 HO3. In addition, nearly 10 per cent of the experiments led to brief moon–moon episodes in which the value of the selenocentric energy of 2020 CD3 became negative.

Funder

Ministerio de Economía y Competitividad

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3