The origin of optical emission lines in the soft state of X-ray binary outbursts: the case of MAXI J1820+070

Author:

Koljonen K I I123ORCID,Long K S45,Matthews J H6ORCID,Knigge C7ORCID

Affiliation:

1. Institutt for Fysikk, Norwegian University of Science and Technology , Høgskloreringen 5, Trondheim 7491, Norway

2. Finnish Centre for Astronomy with ESO (FINCA), University of Turku , Vesilinnantie 5, 20014 Turku, Finland

3. Aalto University Metsähovi Radio Observatory , PO Box 13000, FI-00076 Aalto, Finland

4. Space Telescope Science Institute , 3700 San Martin Drive, Baltimore, MD 21218, USA

5. Eureka Scientific Inc. , 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017, USA

6. Department of Physics, Astrophysics, University of Oxford , Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK

7. School of Physics and Astronomy, University of Southampton , Highfield, Southampton, SO17 1BJ, UK

Abstract

ABSTRACT The optical emission line spectra of X-ray binaries (XRBs) are thought to be produced in an irradiated atmosphere, possibly the base of a wind, located above the outer accretion disc. However, the physical nature of – and physical conditions in – the line-forming region remain poorly understood. Here, we test the idea that the optical spectrum is formed in the transition region between the cool geometrically thin part of the disc near the mid-plane and a hot vertically extended atmosphere or outflow produced by X-ray irradiation. We first present a VLT X-Shooter spectrum of XRB MAXI J1820+070 in the soft state associated with its 2018 outburst, which displays a rich set of double-peaked hydrogen and helium recombination lines. Aided by ancillary X-ray spectra and reddening estimates, we then model this spectrum with the Monte Carlo radiative transfer code python, using a simple biconical disc wind model inspired by radiation-hydrodynamic simulations of irradiation-driven outflows from XRB discs. Such a model can qualitatively reproduce the observed features; nearly all of the optical emission arising from the transonic ‘transition region’ near the base of the wind. In this region, characteristic electron densities are on the order of 1012–13 cm−3, in line with the observed flat Balmer decrement (H $\alpha$/H $\beta$ ≈ 1.3). We conclude that strong irradiation can naturally give rise to both the optical line-forming layer in XRB discs and an overlying outflow/atmosphere that produces X-ray absorption lines.

Funder

European Research Council

National Aeronautics and Space Administration

Space Telescope Science Institute

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3