Turbulence, coherence, and collapse: Three phases for core evolution

Author:

Offner Stella S R1ORCID,Taylor Josh1,Markey Carleen2ORCID,Chen Hope How-Huan1,Pineda Jaime E3ORCID,Goodman Alyssa A4,Burkert Andreas5,Ginsburg Adam6,Choudhury Spandan3

Affiliation:

1. Department of Astronomy, The University of Texas , Austin, TX 78712, USA

2. Department of Physics, Carnegie Mellon University , Pittsburgh, PA 15253, USA

3. Max-Planck-Institut für extraterrestrische Physik , Giesenbachstrasse 1, D-85748 Garching, Germany

4. Harvard-Smithsonian Center for Astrophysics , 60 Garden St., Cambridge, MA 02138, USA

5. University Observatory Munich (USM) , Scheinerstrasse 1, D-81679 Munich, Germany

6. Department of Astronomy, University of Florida , PO Box 112055, USA

Abstract

ABSTRACT We study the formation, evolution, and collapse of dense cores by tracking structures in a magnetohydrodynamic simulation of a star-forming cloud. We identify cores using the dendrogram algorithm and utilize machine learning techniques, including Neural Gas prototype learning and Fuzzy c-means clustering to analyse the density and velocity dispersion profiles of cores together with six bulk properties. We produce a 2-d visualization using a Uniform Manifold Approximation and Projection (UMAP), which facilitates the connection between physical properties and three partially-overlapping phases: i) unbound turbulent structures (Phase I), ii) coherent cores that have low turbulence (Phase II), and iii) bound cores, many of which become protostellar (Phase III). Within Phase II, we identify a population of long-lived coherent cores that reach a quasi-equilibrium state. Most prestellar cores form in Phase II and become protostellar after evolving into Phase III. Due to the turbulent cloud environment, the initial core properties do not uniquely predict the eventual evolution, i.e. core evolution is stochastic, and cores follow no one evolutionary path. The phase lifetimes are 1.0 ± 0.1 × 105 yr, 1.3 ± 0.2 × 105 yr, and 1.8 ± 0.3 × 105 yr for Phase I, II, and III, respectively. We compare our results to NH3 observations of dense cores. Known coherent cores predominantly map into Phase II, while most turbulent pressure-confined cores map to Phase I or III. We predict that a significant fraction of observed starless cores have unresolved coherent regions and that ≳20 per cent of observed starless cores will not form stars. Measurements of core radial profiles in addition to the usual bulk properties will enable more accurate predictions of core evolution.

Funder

Research Corporation for Science Advancement

NSF

Association of American Geographers

Max Planck Society

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Survey of complex organic molecules in starless and pre-stellar cores in the Perseus molecular cloud;Monthly Notices of the Royal Astronomical Society;2024-09-03

2. Collapsing molecular clouds with tracer particles – II. Collapse histories;Monthly Notices of the Royal Astronomical Society;2024-06-21

3. Properties of molecular clumps and cores in colliding magnetized flows;Monthly Notices of the Royal Astronomical Society;2024-06-19

4. Probing the physics of star formation (ProPStar);Astronomy & Astrophysics;2024-06

5. An ALMA Search for Substructure and Fragmentation in Starless Cores in Orion B North;The Astrophysical Journal;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3