Parameter study for the burst mode of accretion in massive star formation

Author:

Meyer D M-A1ORCID,Vorobyov E I23,Elbakyan V G4ORCID,Eislöffel J5,Sobolev A M6ORCID,Stöhr M78

Affiliation:

1. Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, D-14476 Potsdam, Germany

2. Department of Astrophysics, The University of Vienna, A-1180 Vienna, Austria

3. Institute of Astronomy, Russian Academy of Sciences, Pyatnitskaya str. 48, Moscow 119017, Russia

4. School of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, United-Kingdom

5. Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg, Germany

6. Ural Federal University, 51 Lenin Str., 620051 Ekaterinburg, Russia

7. VSC Research Center, TU Wien, Operngasse 11, A-1040 Vienna, Austria

8. BOKU-IT, University of Natural Resources and Life Sciences, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria

Abstract

ABSTRACT It is now a widely held view that, in their formation and early evolution, stars build up mass in bursts. The burst mode of star formation scenario proposes that the stars grow in mass via episodic accretion of fragments migrating from their gravitationally unstable circumstellar discs, and it naturally explains the existence of observed pre-main-sequence bursts from high-mass protostars. We present a parameter study of hydrodynamical models of massive young stellar objects (MYSOs) that explores the initial masses of the collapsing clouds (Mc = 60–$200\, \rm M_{\odot }$) and ratio of rotational-to-gravitational energies (β = 0.005–0.33). An increase in Mc and/or β produces protostellar accretion discs that are more prone to develop gravitational instability and to experience bursts. We find that all MYSOs have bursts even if their pre-stellar core is such that β ≤ 0.01. Within our assumptions, the lack of stable discs is therefore a major difference between low- and high-mass star formation mechanisms. All our disc masses and disc-to-star mass ratios Md/M⋆ > 1 scale as a power law with the stellar mass. Our results confirm that massive protostars accrete about $40\, -\, 60{{\ \rm per\ cent}}$ of their mass in the burst mode. The distribution of time periods between two consecutive bursts is bimodal: there is a short duration ($\sim 1\, -\, 10~\rm yr$) peak corresponding to the short, faintest bursts and a long-duration peak (at $\sim 10^{3}\, -\, 10^{4} \rm yr$) corresponding to the long, FU-Orionis-type bursts appearing in later disc evolution, i.e. around $30\, \rm kyr$ after disc formation. We discuss this bimodality in the context of the structure of massive protostellar jets as potential signatures of accretion burst history.

Funder

Ministry of Science and Higher Education of the Russian Federation

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3