General relativistic radiation transport: implications for VLBI/EHT observations of AGN discs, winds, and jets

Author:

Bandyopadhyay Bidisha1ORCID,Fendt Christian2,Schleicher Dominik R G1,Vourellis Christos2

Affiliation:

1. Departamento de Astronomía, Facultad Ciencias Físicas y Matemáticas, Universidad de Concepción, Av. Esteban Iturra s/n Barrio Universitario, Casilla 160-C, Concepción, Chile

2. Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany

Abstract

Abstract In 2019, the Event Horizon Telescope Collaboration (EHTC) has published the first image of a supermassive black hole (SMBH) obtained via the Very Large Baseline Interferometry (VLBI) technique. In the future, it is expected that additional and more sensitive VLBI observations will be pursued for other nearby active galactic nuclei (AGN), and it is therefore important to understand which possible features can be expected in such images. In this paper, we post-process general relativistic magneto-hydrodynamical (GR-MHD) simulations that include resistivity, thus providing a self-consistent jet formation model, including resistive mass loading of a wind launched from a disc in Keplerian rotation. The ray-tracing is done using the General Relativistic Ray-Tracing code grtrans assuming synchrotron emission. We study the appearance of the black hole environment including the accretion disc, winds and jets under a large range of condition, varying black hole mass, accretion rate, spin, inclination angle, disc parameters, and observed frequency. When we adopt M87-like parameters, we show that we can reproduce a ring-like feature (similar as observed by the EHT) for some of our simulations. The latter suggests that such Keplerian disc models thus could be consistent with the observed results. Depending on their masses, accretion rates, spin, and the sensitivity of the observation, we note that other SMBHs may show additional features like winds and jets in the observations.

Funder

CATA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synthetic gravitational lens image of the Sagittarius A* black hole with a thin disc model;Monthly Notices of the Royal Astronomical Society;2024-01-04

2. Truncated accretion discs in black hole X-ray binaries: dynamics and variability signatures;Monthly Notices of the Royal Astronomical Society;2022-10-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3