The effects of binary stars on galaxies and metal-enriched gas during reionization

Author:

Doughty Caitlin1ORCID,Finlator Kristian123ORCID

Affiliation:

1. Department of Astronomy, New Mexico State University, Las Cruces, NM 88003, USA

2. Cosmic Dawn Center (DAWN), Niels Bohr Institute, University of Copenhagen, 2100 CØpenhagen, Denmark

3. DTU-Space, Technical University of Denmark, 2100 CØpenhagen, Denmark

Abstract

ABSTRACT Binary stars are abundant in nearby galaxies, but are typically unaccounted for in simulations of the high-redshift Universe. Stellar population synthesis models that include the effects of binary evolution result in greater relative abundances of ionizing photons that could significantly affect the ambient ionizing background during the epoch of hydrogen reionization, additionally leading to differences in galaxy gas content and star formation. We use hydrodynamic cosmological simulations including in situ multifrequency radiative transfer to evaluate the effects of a high binary fraction in reionization-era galaxies on traits of the early intergalactic medium and the abundance of H i and He ii ionizing photons. We further extend this to analyse the traits of enriched gas. In comparing metrics generated using a fiducial simulation assuming single stars with one incorporating a high binary fraction, we find that binary stars cause H i reionization to complete earlier and at an accelerated pace, while also increasing the abundances of high-ionization metals (C iv and Si iv) in simulated absorption spectra while reducing the abundance of low-ionization states (O i, Si ii, and C ii). However, through increased photoheating of galactic and circumgalactic gas, they simultaneously reduce the rate of star formation in low-mass galaxies, slowing the ongoing process of enrichment and suppressing their own ionizing background. This potentially contributes to a slower He ii reionization process at $z\ge 5$, and further indicates that self-regulation of galaxies could be underestimated when neglecting binary stellar evolution.

Funder

NSF

Brinson Foundation

Moore Foundation

New Mexico Space Grant Consortium

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3