On the Jacobi capture origin of binaries with applications to the Earth-Moon system and black holes in galactic nuclei

Author:

Boekholt Tjarda C N1ORCID,Rowan Connar1,Kocsis Bence1ORCID

Affiliation:

1. Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory , Parks Road, Oxford, OX1 3PU, UK

Abstract

ABSTRACT Close encounters between two bodies in a disc often result in a single orbital deflection. However, within their Jacobi volumes, where the gravitational forces between the two bodies and the central body become competitive, temporary captures with multiple close encounters become possible outcomes: a Jacobi capture. We perform three-body simulations in order to characterize the dynamics of Jacobi captures in the plane. We find that the phase space structure resembles a Cantor-like set with a fractal dimension of about 0.4. The lifetime distribution decreases exponentially, while the distribution of the closest separation follows a power law with index 0.5. In our first application, we consider the Jacobi capture of the Moon. We demonstrate that both tidal captures and giant impacts are possible outcomes. The impact speed is well approximated by a parabolic encounter, while the impact angles follow that of a uniform beam on a circular target. Jacobi captures at larger heliocentric distances are more likely to result in tidal captures. In our second application, we find that Jacobi captures with gravitational wave dissipation can result in the formation of binary black holes in galactic nuclei. The eccentricity distribution is approximately superthermal and includes both prograde and retrograde orientations. We conclude that dissipative Jacobi captures form an efficient channel for binary formation, which motivates further research into establishing the universality of Jacobi captures across multiple astrophysical scales.

Funder

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Black hole binaries in AGN accretion discs – II. Gas effects on black hole satellite scatterings;Monthly Notices of the Royal Astronomical Society;2023-12-01

2. White dwarf–white dwarf collisions in AGN discs via close encounters;Monthly Notices of the Royal Astronomical Society;2023-07-22

3. Electromagnetic signatures of white dwarf collisions in AGN discs;Monthly Notices of the Royal Astronomical Society;2023-07-04

4. Black hole binary formation in AGN discs: from isolation to merger;Monthly Notices of the Royal Astronomical Society;2023-07-03

5. Gas dynamical friction as a binary formation mechanism in AGN discs;Monthly Notices of the Royal Astronomical Society;2023-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3