Stellar populations in STARFORGE: the origin and evolution of star clusters and associations

Author:

Farias Juan P1ORCID,Offner Stella S R1ORCID,Grudić Michael Y2,Guszejnov Dávid3ORCID,Rosen Anna L456ORCID

Affiliation:

1. Department of Astronomy, University of Texas at Austin , TX 78712 , USA

2. Carnegie Observatories , 813 Santa Barbara St, Pasadena, CA 91101 , USA

3. Center for Astrophysics | Harvard & Smithsonian , 60 Garden St, Cambridge, MA 02138 , USA

4. Department of Astronomy, San Diego State University , San Diego, CA 92182 , USA

5. Computational Science Research Center, San Diego State University , San Diego, CA 92182 , USA

6. Department of Astronomy & Astrophysics, University of California , San Diego, La Jolla, CA 92093 , USA

Abstract

ABSTRACT Most stars form in highly clustered environments within molecular clouds, but eventually disperse into the distributed stellar field population. Exactly how the stellar distribution evolves from the embedded stage into gas-free associations and (bound) clusters is poorly understood. We investigate the long-term evolution of stars formed in the starforge simulation suite – a set of radiation-magnetohydrodynamic simulations of star-forming turbulent clouds that include all key stellar feedback processes inherent to star formation. We use nbody6++gpu to follow the evolution of the young stellar systems after gas removal. We use HDBSCAN to define stellar groups and analyse the stellar kinematics to identify the true bound star clusters. The conditions modeled by the simulations, i.e. global cloud surface densities below 0.15 g cm−2, star formation efficiencies below 15 per cent, and gas expulsion time-scales shorter than a free fall time, primarily produce expanding stellar associations and small clusters. The largest star clusters, which have ∼1000 bound members, form in the densest and lowest velocity dispersion clouds, representing ∼32 and 39 per cent of the stars in the simulations, respectively. The cloud’s early dynamical state plays a significant role in setting the classical star formation efficiency versus bound fraction relation. All stellar groups follow a narrow mass-velocity dispersion power-law relation at 10 Myr with a power-law index of 0.21. This correlation result in a distinct mass–size relationship for bound clusters. We also provide valuable constraints on the gas dispersal time-scale during the star formation process and analyse the implications for the formation of bound systems.

Funder

NASA

NSF

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Star Formation by Supernova Implosion;The Astrophysical Journal Letters;2024-08-01

2. Wide-binary eccentricity distribution in young star clusters: dependence on the binary separation and mass;Monthly Notices of the Royal Astronomical Society;2024-07-03

3. FROST-CLUSTERS – I. Hierarchical star cluster assembly boosts intermediate-mass black hole formation;Monthly Notices of the Royal Astronomical Society;2024-06-05

4. Populating the Milky Way;Astronomy & Astrophysics;2024-06

5. Dynamics of Star Cluster Formation: Mergers in Gas-rich Environments;The Astrophysical Journal;2024-05-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3