De-noising of galaxy optical spectra with autoencoders

Author:

Scourfield M1,Saintonge A1ORCID,de Mijolla D1,Viti S12

Affiliation:

1. Department of Physics and Astronomy, University College London , Gower St., London, WC1E 6BT , UK

2. Leiden Observatory, Leiden University , PO Box 9513, 2300 RA Leiden , the Netherlands

Abstract

ABSTRACT Optical spectra contain a wealth of information about the physical properties and formation histories of galaxies. Often though, spectra are too noisy for this information to be accurately retrieved. In this study, we explore how machine learning methods can be used to de-noise spectra and increase the amount of information we can gain without having to turn to sample averaging methods such as spectral stacking. Using machine learning methods trained on noise-added spectra – Sloan Digital Sky Survey (SDSS) spectra with Gaussian noise added – we investigate methods of maximizing the information we can gain from these spectra, in particular from emission lines, such that more detailed analysis can be performed. We produce a variational autoencoder (VAE) model, and apply it on a sample of noise-added spectra. Compared to the flux measured in the original SDSS spectra, the model values are accurate within 0.3–0.5 dex, depending on the specific spectral line and signal-to-noise ratio. Overall, the VAE performs better than a principal component analysis method, in terms of reconstruction loss and accuracy of the recovered line fluxes. To demonstrate the applicability and usefulness of the method in the context of large optical spectroscopy surveys, we simulate a population of spectra with noise similar to that in galaxies at z = 0.1 observed by the Dark Energy Spectroscopic Instrument (DESI). We show that we can recover the shape and scatter of the mass–metallicity relation in this ‘DESI-like’ sample, in a way that is not possible without the VAE-assisted de-noising.

Funder

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3