Stellar encounters with giant molecular clouds

Author:

Kokaia Giorgi1,Davies Melvyn B1

Affiliation:

1. Department of Astronomy and Theoretical Physics, Lund Observatory, Lund University, Box 43, SE-221 00 Lund, Sweden

Abstract

ABSTRACTGiant molecular clouds (GMCs) are believed to affect the biospheres of planets as their host star passes through them. We simulate the trajectories of stars and GMCs in the Galaxy and determine how often stars pass through GMCs. We find a strong decreasing dependence with Galactocentric radius, and with the velocity perpendicular to the Galactic plane, V$\mathrm{ z}$. The XY-component of the kinematic heating of stars was shown to not affect the GMC hit rate, unlike the Z-dependence (V$\mathrm{ z}$) implies that stars hit fewer GMCs as they age. GMCs are locations of star formation, therefore we also determine how often stars pass near supernovae. For the supernovae the decrease with V$\mathrm{ z}$ is steeper as how fast the star passes through the GMC determines the probability of a supernova encounter. We then integrate a set of Sun-like trajectories to see the implications for the Sun. We find that the Sun hits 1.6 ± 1.3 GMCs per Gyr which results in 1.5 ± 1.1 or (with correction for clustering) 0.8 ± 0.6 supernova closer than 10 pc per Gyr. The different the supernova frequencies are from whether one considers multiple supernovae per GMC crossing (few Myr) as separate events. We then discuss the effect of the GMC hits on the Oort cloud, and the Earth’s climate due to accretion, we also discuss the records of distant supernova. Finally, we determine Galactic Habitable Zone using our model. For the thin disc, we find it to lie between 5.8 and 8.7 kpc and for the thick disc to lie between 4.5 and 7.7 kpc.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamical aspects of Galactic habitability in N-body simulations;Publications of the Astronomical Society of Australia;2023

2. Effects of capturing a wide-orbit planet on planetary systems: system stability and habitable zone bombardment rates;Monthly Notices of the Royal Astronomical Society;2021-12-31

3. The lunar surface as a recorder of astrophysical processes;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2020-11-23

4. Oumuamuas Passing through Molecular Clouds;The Astrophysical Journal;2020-11-09

5. Keeping It Cool: Much Orbit Migration, yet Little Heating, in the Galactic Disk;The Astrophysical Journal;2020-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3