How do bound star clusters form?

Author:

Krumholz Mark R1234ORCID,McKee Christopher F5

Affiliation:

1. Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia

2. ARC Centre of Excellence for Astronomy in Three Dimensions (ASTRO-3D), Canberra, ACT 2611, Australia

3. Institut für Theoretische Astrophysik, Zentrum für Astronomie, Universität Heidelberg, D-69120 Heidelberg, Germany

4. Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany

5. Departments of Physics and Astronomy, University of California, Berkeley, CA 94720, USA

Abstract

ABSTRACT Gravitationally bound clusters that survive gas removal represent an unusual mode of star formation in the Milky Way and similar spiral galaxies. While forming, they can be distinguished observationally from unbound star formation by their high densities, virialized velocity structures, and star formation histories that accelerate towards the present, but extend multiple free-fall times into the past. In this paper, we examine several proposed scenarios for how such structures might form and evolve, and carry out a Bayesian analysis to test these models against observed distributions of protostellar age, counts of young stellar objects relative to gas, and the overall star formation rate of the Milky Way. We show that models in which the acceleration of star formation is due either to a large-scale collapse or a time-dependent increase in star formation efficiency are unable to satisfy the combined set of observational constraints. In contrast, models in which clusters form in a ‘conveyor belt’ mode where gas accretion and star formation occur simultaneously, but the star formation rate per free-fall time is low, can match the observations.

Funder

Australian Research Council

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3