Affiliation:
1. Jodrell Bank Centre for Astrophysics, Department of Physics & Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL UK
2. The Alan Turing Institute, Euston Road, London NW1 2DB, UK
Abstract
ABSTRACT
Weight sharing in convolutional neural networks (CNNs) ensures that their feature maps will be translation-equivariant. However, although conventional convolutions are equivariant to translation, they are not equivariant to other isometries of the input image data, such as rotation and reflection. For the classification of astronomical objects such as radio galaxies, which are expected statistically to be globally orientation invariant, this lack of dihedral equivariance means that a conventional CNN must learn explicitly to classify all rotated versions of a particular type of object individually. In this work we present the first application of group-equivariant convolutional neural networks to radio galaxy classification and explore their potential for reducing intra-class variability by preserving equivariance for the Euclidean group E(2), containing translations, rotations, and reflections. For the radio galaxy classification problem considered here, we find that classification performance is modestly improved by the use of both cyclic and dihedral models without additional hyper-parameter tuning, and that a D16 equivariant model provides the best test performance. We use the Monte Carlo Dropout method as a Bayesian approximation to recover epistemic uncertainty as a function of image orientation and show that E(2)-equivariant models are able to reduce variations in model confidence as a function of rotation.
Funder
Alan Turing Institute
Science and Technology Facilities Council
International Business Machines Corporation
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献