Affiliation:
1. ICRAR M468 The University of Western Australia 35 Stirling Hwy, Crawley Western Australia 6009, Australia
Abstract
Abstract
We discuss the mechanism(s) of bar formation in isolated and tidally interacting disk galaxies using the results of idealized collisionless Nbody simulations of the galaxies. In order to better understand the mechanism, we investigate orbital eccentricities (e), epochs of apocenter passages (ta), azimuthal angles at ta (ϕa), precession rates (Ωpre), for individual stars, as well as bar strengths represented by relative m = 2 Fourier amplitude (A2) and bar pattern speeds (Ωbar). The main results are as follows. A significant fraction of stars with initially different ϕa and Ωpre in an isolated disk galaxy can have similar values within several dynamical timescales. This synchronization of ϕa and Ωpre, which is referred to as apsidal precession synchronization (‘APS’) in the present study, is caused by the enhanced strength of the tangential component of gravitational force. A weak seed bar (A2 < 0.1) is first formed through APS in local regions of a disk, then the bar grows due to APS. In the bar growth phase (0.1 < A2 < 0.4), APS can proceed more efficiently due to stronger tangential force from the bar so that it can enhance the bar strength further. This positive feedback loop in APS is the key physical mechanism of bar growth in isolated stellar disks. Bar formation can be severely suppressed in disks with lower disk mass fractions and/or higher Q parameters due to much less efficient APS. APS proceeds more rapidly and more efficiently due to strong tidal perturbation in the formation of tidal bars compared to spontaneous bar formation.
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献