New insights into the helium star formation channel of AM CVn systems with explanations of Gaia14aae and ZTFJ1637+49

Author:

Sarkar Arnab1ORCID,Ge Hongwei123ORCID,Tout Christopher A1ORCID

Affiliation:

1. Institute of Astronomy, The Observatories , Madingley Road, Cambridge CB3 OHA, UK

2. Yunnan Observatories, Chinese Academy of Sciences , Kunming 650216, China

3. Key Laboratory for Structure and Evolution of Celestial Objects, Chinese Academy of Sciences , PO Box 110, Kunming 650216, China

Abstract

ABSTRACT We model helium-rich stars with solar metallicity (X = 0.7, Z = 0.02) progenitors that evolve to form AM Canum Venaticorum systems through a helium-star formation channel, with the aim to explain the observed properties of Gaia14aae and ZTFJ1637+49. We show that semidegenerate, H-exhausted (X ≤ 10−5), He-rich (Y ≈ 0.98) donors can be formed after a common envelope evolution (CEE) phase if either additional sources of energy are used to eject the common envelope, or a different formalism of CEE is implemented. We follow the evolution of such binary systems after the CEE phase using the Cambridge stellar evolution code when they consist of a He-star and a white dwarf accretor, and report that the mass, radius, and mass-transfer rate of the donor, the orbital period of the system, and the lack of hydrogen in the spectrum of Gaia14aae and ZTFJ1637+49 match well with our modelled trajectories wherein, after the CEE phase Roche lobe overflow is governed not only by the angular momentum loss (AML) owing to gravitational wave radiation (AMLGR) but also an additional AML owing to α–Ω dynamos in the donor. This additional AML is modelled with our double-dynamo (DD) model of magnetic braking in the donor star. We explain that this additional AML is just a consequence of extending the DD model from canonical cataclysmic variable donors to evolved donors. We show that none of our modelled trajectories match with Gaia14aae or ZTFJ1637+49 if the systems are modelled only with AMLGR.

Funder

NSFC

CAS

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3