Prospects of probing dark energy with eLISA: Standard versus null diagnostics

Author:

Baral Pratyusava1ORCID,Roy Soumendra Kishore1,Pal Supratik2

Affiliation:

1. Department of Physics, Presidency University, 86/1 College Street, Kolkata 700073, India

2. Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India

Abstract

ABSTRACT Gravitational waves from supermassive black hole binary mergers along with an electromagnetic counterpart have the potential to shed ‘light’ on the nature of dark energy in the intermediate redshift regime. Accurate measurement of dark energy parameters at intermediate redshift is extremely essential to improve our understanding of dark energy, and to possibly resolve a couple of tensions involving cosmological parameters. We present a Fisher matrix forecast analysis in the context of eLISA to predict the errors for three different cases: the non-interacting dark energy with constant and evolving equation of state (EoS), and the interacting dark sectors with a generalized parametrization. In all three cases, we perform the analysis for two separate formalisms, namely, the standard EoS formalism and the Om parametrization which is a model-independent null diagnostic for a wide range of fiducial values in both phantom and non-phantom regions, to make a comparative analysis between the prospects of these two diagnostics in eLISA. Our analysis reveals that it is wiser and more effective to probe the null diagnostic instead of the standard EoS parameters for any possible signature of dark energy at intermediate redshift measurements like eLISA.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gravitational wave probes of Barrow cosmology with LISA standard sirens;Journal of Cosmology and Astroparticle Physics;2024-06-01

2. Further understanding the interaction between dark energy and dark matter: current status and future directions;Reports on Progress in Physics;2024-02-23

3. Cosmology with the Laser Interferometer Space Antenna;Living Reviews in Relativity;2023-08-28

4. A thorough investigation of the prospects of eLISA in addressing the Hubble tension: Fisher forecast, MCMC and Machine Learning;Journal of Cosmology and Astroparticle Physics;2023-06-01

5. No slip gravity in light of LISA standard sirens;Monthly Notices of the Royal Astronomical Society;2022-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3