Energetic particles in the central starburst, disc, and halo of NGC253

Author:

Rephaeli Yoel12,Sadeh Sharon1

Affiliation:

1. School of Physics and Astronomy, Tel Aviv University , Tel Aviv 69978 , Israel

2. Center for Astrophysics and Space Sciences, University of California , San Diego, La Jolla, CA 92093-0424 , USA

Abstract

ABSTRACT Detailed modelling of the spectro-spatial distributions of energetic electrons and protons in galactic discs and haloes of starburst galaxies (SBGs) is needed in order to follow their interactions with the magnetized interstellar medium and radiation fields, determine their radiative yields, and for estimating their residual spectral densities in intergalactic environments. We have developed a semi-analytical approach for calculating the particle spectro-spatial distributions in the disc and halo based on a diffusion model for particle propagation from acceleration sites in the central SB and disc regions, including all their relevant interaction modes. Important overall normalization of our models is based on previous modelling of the Galactic disc (with the galprop code), scaled to the higher star-formations rate in NGC253, and on spatially resolved radio measurements of the central SB and disc. These provide the essential input for determining the particle distributions and their predicted radiative yields in the outer disc and inner halo for a range of values of the key parameters that affect diffusion rate and energy losses. Results of our work clearly indicate that quantitative description of non-thermal emission in SBGs has to be based on modelling of the particle distributions in the entire disc, not just the central SB region.

Funder

JCF

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3