Parametric description of intermittent probability distribution functions in solar wind and magnetohydrodynamic turbulence

Author:

Palacios Juan C1ORCID,Perez Jean C1ORCID,Bourouaine Sofiane1ORCID

Affiliation:

1. Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology , 150 University Blvd, Melbourne, FL 32901 , USA

Abstract

ABSTRACT In this work, we find empirical evidence that the scale-dependent statistical properties of solar wind and magnetohydrodynamic (MHD) turbulence can be described in terms of a family of parametric probability distribution functions (PDFs) known as Normal Inverse Gaussian (NIG). Understanding these PDFs is one of the most important goals in turbulence theory, as they are inherently connected to the intermittent properties of solar wind turbulence. We investigate the properties of PDFs of Elsasser increments based on a large statistical sample from solar wind observations and high-resolution numerical simulations of MHD turbulence. In order to measure the PDFs and their corresponding properties, three experiments are presented: fast and slow solar wind for experimental data and a simulation of reduced MHD (RMHD) turbulence. Conditional statistics on a 23-yr-long sample of WIND data near 1 au and high-resolution pseudo-spectral simulation of steadily driven RMHD turbulence on a $2048^3$ mesh are used to construct scale-dependent PDFs. The empirical PDFs are fitted to NIG distributions, which depend on four free parameters. Our analysis shows that NIG distributions accurately capture the evolution of the PDFs, with scale-dependent parameters, from large scales characterized by a Gaussian distribution, turning to exponential tails within the inertial range and stretched exponentials at dissipative scales. We also show that empirically-measured NIG parameters exhibit well-defined scaling properties that are similar across the three empirical data sets, which may be indicative of universal behaviour.

Funder

National Aeronautics and Space Administration

National Science Foundation

Shine

Division of Atmospheric and Geospace Sciences

U.S. Department of Energy

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3