Hydrogen and helium escape on Venus via energy transfer from hot oxygen atoms

Author:

Gu Hao1,Cui Jun123,Niu Dandan4,Yu Jiang1

Affiliation:

1. Planetary Environmental and Astrobiological Research Laboratory (PEARL), School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, Guangdong, China

2. Chinese Academy of Sciences Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Beijing 100101, China

3. Chinese Academy of Sciences Center for Excellence in Comparative Planetology, Hefei 230026, Anhui, China

4. Institute of Space Science and Applied Technology, Harbin Institute of Technology, Shenzhen 518055, Guangdong, China

Abstract

ABSTRACT Due to the relatively strong gravity on Venus, heavy atmospheric neutrals are difficult to accelerate to the escape velocity. However, a variety of processes, such as the dissociative recombination of ionospheric O$_2^+$, are able to produce hot atoms which could deliver a significant amount of energy to light neutrals and drive their escape. In this study, we construct a Monte Carlo model to simulate atmospheric escape of three light species, H, H2, and He, on Venus via such a knock-on process. Two Venusian background atmosphere models are adopted, appropriate for solar minimum and maximum conditions. Various energy-dependent and species-dependent cross-sections, along with a common strongly forward scattering angle distribution, are used in our calculations. Our model results suggest that knock-on by hot O likely plays the dominant role in driving total atmospheric hydrogen and helium escape on Venus at the present epoch, with a significant portion contributed from regions below the exobase. Substantial variations are also revealed by our calculations. Of special interest is the modelled reduction in escape flux at high solar activities for all species, mainly associated with the enhancement in thermal O concentration near the exobase at high solar activities which hinders escape. Finally, model uncertainties due to several controlling factors, including the distribution of relevant light species in the background atmosphere, the plane-parallel approximation, and the finite O energy distribution, are evaluated.

Funder

Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3