On the long-term evolution of rotating radio transients

Author:

Gençali A A1ORCID,Ertan Ü1ORCID

Affiliation:

1. Sabancı University, Orhanlı Tuzla, 34956 İstanbul, Turkey

Abstract

ABSTRACT Investigation of the long-term evolution of rotating radio transients (RRATs) is important to understand the evolutionary connections between the isolated neutron star populations in a single picture. The X-ray luminosities of RRATs (except one source) are not known. In the fallback disc model, we have developed a method to estimate the dipole field strengths of RRATs without X-ray information. We have found that RRATs could have dipole field strengths, B0, at the poles ranging from ∼7 × 109 to ∼6 × 1011 G which fill the gap between the B0 ranges of central compact objects (CCOs) and dim isolated neutron stars (XDINs) estimated in the same model. In our model, most of RRATs are evolving at ages (∼2–6) × 105 yr, much smaller than their characteristic ages, such that, cooling luminosities of a large fraction of relatively nearby RRATs could be detected by the eROSITA all-sky survey. Many RRATs are located above the upper border of the pulsar death valley with the fields inferred from the dipole-torque formula, while they do not show strong, continuous radio pulses. The B0 values estimated in our model, place all RRATs either into the death valley or below the death line. We have tentatively proposed that RRATs could be the sources below their individual death points, and their short radio bursts could be ignited by the disc-field interaction occasionally enhancing the flux of open field lines through the magnetic poles. We have also discussed the evolutionary links between CCOs, RRATs, and XDINs.

Funder

Sabancı University

Scientific and Technological Research Council of Turkey

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolution of the long-period pulsar PSR J0901−4046;Monthly Notices of the Royal Astronomical Society: Letters;2022-12-23

2. Evolution of the long-period pulsar GLEAM-X J162759.5–523504.3;Monthly Notices of the Royal Astronomical Society: Letters;2022-04-01

3. Clues from 4U 0142+61 on supernova fallback disc formation and precession;Monthly Notices of the Royal Astronomical Society;2021-07-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3