Affiliation:
1. Sabancı University, Orhanlı Tuzla, 34956 İstanbul, Turkey
Abstract
ABSTRACT
Investigation of the long-term evolution of rotating radio transients (RRATs) is important to understand the evolutionary connections between the isolated neutron star populations in a single picture. The X-ray luminosities of RRATs (except one source) are not known. In the fallback disc model, we have developed a method to estimate the dipole field strengths of RRATs without X-ray information. We have found that RRATs could have dipole field strengths, B0, at the poles ranging from ∼7 × 109 to ∼6 × 1011 G which fill the gap between the B0 ranges of central compact objects (CCOs) and dim isolated neutron stars (XDINs) estimated in the same model. In our model, most of RRATs are evolving at ages (∼2–6) × 105 yr, much smaller than their characteristic ages, such that, cooling luminosities of a large fraction of relatively nearby RRATs could be detected by the eROSITA all-sky survey. Many RRATs are located above the upper border of the pulsar death valley with the fields inferred from the dipole-torque formula, while they do not show strong, continuous radio pulses. The B0 values estimated in our model, place all RRATs either into the death valley or below the death line. We have tentatively proposed that RRATs could be the sources below their individual death points, and their short radio bursts could be ignited by the disc-field interaction occasionally enhancing the flux of open field lines through the magnetic poles. We have also discussed the evolutionary links between CCOs, RRATs, and XDINs.
Funder
Sabancı University
Scientific and Technological Research Council of Turkey
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Evolution of the long-period pulsar PSR J0901−4046;Monthly Notices of the Royal Astronomical Society: Letters;2022-12-23
2. Evolution of the long-period pulsar GLEAM-X J162759.5–523504.3;Monthly Notices of the Royal Astronomical Society: Letters;2022-04-01
3. Clues from 4U 0142+61 on supernova fallback disc formation and precession;Monthly Notices of the Royal Astronomical Society;2021-07-21