Sub-Chandrasekhar-mass detonations are in tension with the observed t0−MNi56 relation of type Ia supernovae

Author:

Kushnir Doron1,Wygoda Nahliel23,Sharon Amir1

Affiliation:

1. Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100, Israel

2. Department of Astronomy, Yale University, New Haven, CT 06520, USA

3. Department of Physics, NRCN, Beer-Sheva 84190, Israel

Abstract

ABSTRACT Type Ia supernovae (SNe Ia) are likely the thermonuclear explosions of carbon–oxygen (CO) white-dwarf (WD) stars, but their progenitor systems remain elusive. Recent studies have suggested that a propagating detonation within a thin helium shell surrounding a sub-Chandrasekhar mass CO core can subsequently trigger a detonation within the core (the double-detonation model, DDM). The outcome of this explosion is similar to a central ignition of a sub-Chandrasekhar mass CO WD (SCD). While SCD is consistent with some observational properties of SNe Ia, several computational challenges prohibit a robust comparison to the observations. We focus on the observed t0−MNi56 relation, where t0 (the γ-rays’ escape time from the ejecta) is positively correlated with MNi56 (the synthesized 56Ni mass). We apply our recently developed numerical scheme to calculate SCD and show that the calculated t0−MNi56 relation, which does not require radiation transfer calculations, converges to an accuracy of a few per cent. We find a clear tension between our calculations and the observed t0−MNi56 relation. SCD predicts an anticorrelation between t0 and MNi56, with $t_0\approx 30\, \textrm{d}$ for luminous ($M_\text{Ni56}\gtrsim 0.5\, \mathrm{ M}_{\odot }$) SNe Ia, while the observed t0 is in the range of $35\!-\!45\, \textrm{d}$. We show that this tension is larger than the uncertainty of the results, and that it exists in all previous studies of the problem. Our results hint that more complicated models are required, but we argue that DDM is unlikely to resolve the tension with the observations.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3