Massive data compression for parameter-dependent covariance matrices

Author:

Heavens Alan F.1,Sellentin Elena12,de Mijolla Damien1,Vianello Alvise1

Affiliation:

1. Imperial Centre for Inference and Cosmology (ICIC), Astrophysics, Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK

2. Département de Physique Théorique, Université de Genève, Quai Ernest-Ansermet 24, CH-1211 Genève, Switzerland

Abstract

Abstract We show how the massive data compression algorithm MOPED can be used to reduce, by orders of magnitude, the number of simulated data sets which are required to estimate the covariance matrix required for the analysis of Gaussian-distributed data. This is relevant when the covariance matrix cannot be calculated directly. The compression is especially valuable when the covariance matrix varies with the model parameters. In this case, it may be prohibitively expensive to run enough simulations to estimate the full covariance matrix throughout the parameter space. This compression may be particularly valuable for the next generation of weak lensing surveys, such as proposed for Euclid and Large Synoptic Survey Telescope, for which the number of summary data (such as band power or shear correlation estimates) is very large, ∼104, due to the large number of tomographic redshift bins which the data will be divided into. In the pessimistic case where the covariance matrix is estimated separately for all points in an Monte Carlo Markov Chain analysis, this may require an unfeasible 109 simulations. We show here that MOPED can reduce this number by a factor of 1000, or a factor of ∼106 if some regularity in the covariance matrix is assumed, reducing the number of simulations required to a manageable 103, making an otherwise intractable analysis feasible.

Funder

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 12 × 2 pt combined probes: pipeline, neutrino mass, and data compression;Journal of Cosmology and Astroparticle Physics;2024-01-01

2. Data compression and inference in cosmology with self-supervised machine learning;Monthly Notices of the Royal Astronomical Society;2023-11-27

3. Extreme data compression for Bayesian model comparison;Journal of Cosmology and Astroparticle Physics;2023-11-01

4. Robust Field-level Likelihood-free Inference with Galaxies;The Astrophysical Journal;2023-07-01

5. New constraints on cosmological modified gravity theories from anisotropic three-point correlation functions of BOSS DR12 galaxies;Monthly Notices of the Royal Astronomical Society;2023-05-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3