Atmospheres as a window to rocky exoplanet surfaces

Author:

Byrne Xander1ORCID,Shorttle Oliver12,Jordan Sean1,Rimmer Paul B234ORCID

Affiliation:

1. Institute of Astronomy, University of Cambridge , Madingley Rd, Cambridge CB3 0HA , United Kingdom

2. Department of Earth Sciences, University of Cambridge , Downing St, Cambridge CB2 3EQ , United Kingdom

3. Cavendish Laboratory, University of Cambridge , JJ Thomson Ave, Cambridge CB3 0HE , United Kingdom

4. MRC Laboratory of Molecular Biology , Francis Crick Ave, Cambridge CB2 0QH , United Kingdom

Abstract

ABSTRACT As the characterization of exoplanet atmospheres proceeds, providing insights into atmospheric chemistry and composition, a key question is how much deeper into the planet we might be able to see from its atmospheric properties alone. For small planets with modest atmospheres and equilibrium temperatures, the first layer below the atmosphere will be their rocky surface. For such warm rocky planets, broadly Venus-like planets, the high temperatures and moderate pressures at the base of their atmospheres may enable thermochemical equilibrium between rock and gas. This links the composition of the surface to that of the observable atmosphere. Using an equilibrium chemistry code, we find a boundary in surface pressure–temperature space which simultaneously separates distinct mineralogical regimes and atmospheric regimes, potentially enabling inference of surface mineralogy from spectroscopic observations of the atmosphere. Weak constraints on the surface pressure and temperature also emerge. This regime boundary corresponds to conditions under which SO2 is oxidized and absorbed by calcium-bearing minerals in the crust, thus the two regimes reflect the sulphidation of the crust. The existence of these atmospheric regimes for Venus-like planets is robust to plausible changes in the elemental composition. Our results pave the way to the prospect of characterizing exoplanetary surfaces as new data for short period rocky planet atmospheres emerge.

Funder

University of Cambridge

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3