Constraints on the magnetic field structure in accreting compact objects from aperiodic variability

Author:

Mönkkönen Juhani1,Tsygankov Sergey S12,Mushtukov Alexander A34ORCID,Doroshenko Victor5ORCID,Suleimanov Valery F5ORCID,Poutanen Juri12ORCID

Affiliation:

1. Department of Physics and Astronomy , FI-20014 University of Turku, Finland

2. Space Research Institute of the Russian Academy of Sciences , Profsoyuznaya Str. 84/32, Moscow 117997, Russia

3. Astrophysics, Department of Physics, University of Oxford , Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK

4. Leiden Observatory, Leiden University , NL-2300RA Leiden, the Netherlands

5. Institut für Astronomie und Astrophysik, University of Tübingen , Sand 1, D-72076 Tübingen, Germany

Abstract

ABSTRACT We investigate the aperiodic variability for a relatively large sample of accreting neutron stars and intermediate polars, focusing on the properties of the characteristic break commonly observed in power spectra of accreting objects. In particular, we investigate the relation of the break frequency and the magnetic field strength, both of which are connected to the size of the magnetosphere. We find that for the majority of objects in our sample the measured break frequency values indeed agree with estimated inner radii of the accretion disc, which allows to use observed break frequencies to independently assess the magnetic field strength and structure in accreting compact objects. As a special case, we focus on Hercules X-1 which is a persistent, medium-luminosity X-ray pulsar accreting from its low-mass companion. In the literature, it has been suggested that the complex pulse profiles, the spin-up behaviour and the luminosity-correlation of the cyclotron energy seen in Her X-1 can be explained with a complex magnetic field structure of the neutron star. Here, we connect the measured break frequency to the magnetospheric radius and show that the magnetic field strength derived assuming a dipole configuration is nearly an order of magnitude smaller than the magnetic field strength corresponding to the cyclotron energy. Accordingly, this discrepancy can be explained with the magnetic field having strong multipole components. The multipolar structure would also increase the accreting area on the neutron star surface, explaining why the critical luminosity for accretion column formation is puzzlingly high in this source.

Funder

Ministry of Science and Higher Education

Finnish Cultural Foundation

German Research Foundation

Academy of Finland

German Academic Exchange Service

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3