MRI-driven dynamo at very high magnetic Prandtl numbers

Author:

Guilet Jérôme1,Reboul-Salze Alexis12,Raynaud Raphaël3ORCID,Bugli Matteo1ORCID,Gallet Basile4

Affiliation:

1. Université Paris-Saclay, Université Paris Cité , CEA, CNRS, AIM, F-91191 Gif-sur-Yvette, France

2. Max Planck Institute for Gravitational Physics (Albert Einstein Institute) , D-14476 Potsdam, Germany

3. Université Paris Cité, Université Paris-Saclay , CEA, CNRS, AIM, F-91191 Gif-sur-Yvette, France

4. Université Paris-Saclay , CNRS, CEA, Service de Physique de l’Etat Condensé, F-91191 Gif-sur-Yvette, France

Abstract

ABSTRACT The dynamo driven by the magnetorotational instability (MRI) is believed to play an important role in the dynamics of accretion discs and may also explain the origin of the extreme magnetic fields present in magnetars. Its saturation level is an important open question known to be particularly sensitive to the diffusive processes through the magnetic Prandtl number Pm (the ratio of viscosity to resistivity). Despite its relevance to proto-neutron stars and neutron star merger remnants, the numerically challenging regime of high Pm is still largely unknown. Using zero-net flux shearing box simulations in the incompressible approximation, we studied MRI-driven dynamos at unprecedentedly high values of Pm reaching 256. The simulations show that the stress and turbulent energies are proportional to Pm up to moderately high values (Pm ∼ 50). At higher Pm, they transition to a new regime consistent with a plateau independent of Pm for $\rm Pm \gtrsim 100$. This trend is independent of the Reynolds number, which may suggest an asymptotic regime where the energy injection and dissipation are independent of the diffusive processes. Interestingly, large values of Pm not only lead to intense small-scale magnetic fields but also to a more efficient dynamo at the largest scales of the box.

Funder

European Research Council

CINES

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Helical and non-helical large-scale dynamos in thin accretion discs;Monthly Notices of the Royal Astronomical Society;2023-11-06

2. MHD in a Cylindrical Shearing Box. II. Intermittent Bursts and Substructures in MRI Turbulence;The Astrophysical Journal;2023-11-01

3. Resistive relativistic MHD simulations of astrophysical jets;Astronomy & Astrophysics;2023-11

4. Local magneto-shear instability in Newtonian gravity;Monthly Notices of the Royal Astronomical Society;2023-09-02

5. Numerical simulations of the Tayler–Spruit dynamo in proto-magnetars;Monthly Notices of the Royal Astronomical Society: Letters;2023-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3