Age-divided mean stellar populations from full spectrum fitting as the simplified star formation and chemical evolution history of a galaxy: methodology and reliability

Author:

Lee Joon Hyeop1ORCID,Pak Mina123,Jeong Hyunjin1,Oh Sree345ORCID

Affiliation:

1. Korea Astronomy and Space Science Institute , Daejeon 34055, Republic of Korea

2. School of Mathematical and Physical Sciences, Macquarie University , Sydney, NSW 2109, Australia

3. ARC Centre of Excellence for All Sky Astropysics in 3 Dimensions (ASTRO 3D) , Australia

4. Department of Astronomy and Yonsei University Observatory, Yonsei University , Seoul 03722, Republic of Korea

5. Research School of Astronomy and Astrophysics, Australian National University , Canberra, ACT 2611, Australia

Abstract

ABSTRACT We introduce a practical methodology for investigating the star formation and chemical evolution history of a galaxy: age-divided mean stellar populations (ADPs) from full spectrum fitting. In this method, the mass-weighted mean stellar populations and mass fractions (fmass) of young and old stellar components in a galaxy are separately estimated, which are divided with an age cut (selected to be 109.5 yr ≈3.2 Gyr in this paper). To examine the statistical reliability of ADPs, we generate 10 000 artificial galaxy spectra, each of which consists of five random simple stellar population components. Using the Penalized PiXel-Fitting (ppxf) package, we conduct full spectrum fitting to the artificial spectra with noise as a function of wavelength, imitating the real noise of Sydney-Australian Astronomical Observatory Multi-object Integral field spectrograph (SAMI) galaxies. As a result, the Δ (= output − input) of age and metallicity appears to significantly depend on not only signal-to-noise ratio (S/N), but also luminosity fractions (flum) of young and old components. At given S/N and flum, Δ of young components tends to be larger than Δ of old components; e.g. σ(Δ[M/H]) ∼ 0.40 versus 0.23 at S/N = 30 and flum = 50 per cent. The age-metallicity degeneracy appears to be insignificant, but Δlog(age/yr) shows an obvious correlation with Δfmass for young stellar components ($\mathcal {R}\sim 0.6$). The impact of dust attenuation and emission lines appears to be mostly insignificant. We discuss how this methodology can be applied to spectroscopic studies of the formation histories of galaxies, with a few examples of SAMI galaxies.

Funder

Korea Astronomy and Space Science Institute

National Research Foundation of Korea

MSIT

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3