Vetting the optical transient candidates detected by the GWAC network using convolutional neural networks

Author:

Turpin Damien12ORCID,Ganet M34,Antier S5ORCID,Bertin E6,Xin L P1,Leroy N7,Wu C1,Xu Y18,Han X H1,Cai H B1,Li H L1,Lu X M1,Feng Q C1,Wei J Y18

Affiliation:

1. CAS Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China

2. Département d’Astrophysique, Astrophysique, Instrumentation et Modélisation de Paris-Saclay, Université Paris-Saclay, CNRS, CEA, F-91191 Gif-sur-Yvette, France

3. ENSAE Paris, F-91120 Palaiseau, France

4. HEC Paris, F-78350 Jouy-en-Josas, France

5. CNRS, Astroparticule et Cosmologie, F-75013 Paris, France

6. Institut d’Astrophysique de Paris, UPMC-CNRS, UMR7095, F-75014 Paris, France

7. IJCLab, Université Paris-Saclay, CNRS/IN2P3, F-91405 Orsay, France

8. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

ABSTRACT The observation of the transient sky through a multitude of astrophysical messengers has led to several scientific breakthroughs in the last two decades, thanks to the fast evolution of the observational techniques and strategies employed by the astronomers. Now, it requires to be able to coordinate multiwavelength and multimessenger follow-up campaigns with instruments both in space and on ground jointly capable of scanning a large fraction of the sky with a high-imaging cadency and duty cycle. In the optical domain, the key challenge of the wide field-of-view telescopes covering tens to hundreds of square degrees is to deal with the detection, identification, and classification of hundreds to thousands of optical transient (OT) candidates every night in a reasonable amount of time. In the last decade, new automated tools based on machine learning approaches have been developed to perform those tasks with a low computing time and a high classification efficiency. In this paper, we present an efficient classification method using convolutional neural networks (CNNs) to discard many common types of bogus falsely detected in astrophysical images in the optical domain. We designed this tool to improve the performances of the OT detection pipeline of the Ground Wide field Angle Cameras (GWAC) telescopes, a network of robotic telescopes aiming at monitoring the OT sky down to R = 16 with a 15 s imaging cadency. We applied our trained CNN classifier on a sample of 1472 GWAC OT candidates detected by the real-time detection pipeline.

Funder

Chinese Academy of Sciences

Centre National d’Etudes Spatiales

Laboratory Animals Limited

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3