Absorption-based circumgalactic medium line emission estimates

Author:

Piacitelli Daniel R1ORCID,Solhaug Erik1,Faerman Yakov1ORCID,McQuinn Matthew1

Affiliation:

1. Astronomy Department, University of Washington , Seattle, WA 98195, USA

Abstract

ABSTRACT Motivated by integral field units (IFUs) on large ground telescopes and proposals for ultraviolet-sensitive space telescopes to probe circumgalactic medium (CGM) emission, we survey the most promising emission lines and how such observations can inform our understanding of the CGM and its relation to galaxy formation. We tie our emission estimates to both HST/COS absorption measurements of ions around z ≈ 0.2 Milky Way mass haloes and models for the density and temperature of gas. We also provide formulas that simplify extending our estimates to other samples and physical scenarios. We find that O iii 5007 Å and N ii 6583 Å, which at fixed ionic column density are primarily sensitive to the thermal pressure of the gas they inhabit, may be detectable with KCWI and especially IFUs on 30 m telescopes out to half a virial radius. O v 630 Å and O vi 1032,1038 Å are perhaps the most promising ultraviolet lines, with models predicting intensities >100 γ cm−2 s−1 sr−1 in the inner 100 kpc of Milky Way-like systems. A detection of O vi would confirm the collisionally ionized picture and constrain the density profile of the CGM. Other ultraviolet metal lines constrain the amount of gas that is actively cooling and mixing. We find that C iii 978 Å and C iv 1548 Å may be detectable if an appreciable fraction of the observed O vi column is associated with mixing or cooling gas. H α emission within $100\,$ kpc of Milky Way-like galaxies is within reach of current IFUs even for the minimum signal from ionizing background fluorescence, while hydrogen n > 2 Ly-series lines are too weak to be detectable.

Funder

NSF

NASA

University of Michigan

University of Cambridge

Goddard Space Flight Center

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3